
COMP482
Cybersecurity

Week 4 - Monday

Dr. Nicholas Polanco

(he/him)

https://forms.office.com/r/k5gW5MS
BSA

Attendance

- We will not be having class on Friday, I will adjust the schedule on Wed.
to account for the change. This will need to take one of our flex days.
- I also did not know about the day the students take off later in the

term? I will see if I can still make time for the materials people would
like to cover, and can merge a few other topics.

- Your presentations are due a Week from Wednesday (Week 5)
- This is an academic presentation, you will need citations.
- I’m not going to tell anyone to dress up, but be “presentable”
- We will select the order on Monday of Week 5

Important Notes

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Activity: Keylogger
or Buffer Overflow

Reflection Week 3

Important Dates (Week 4)

Internet Threats and Defenses

Outline

1. SQL Injection
2. Cross-Site Scripting (XSS)
3. Cross-Site Request Forgery (CSRF)
4. XML External Entity (XXE) Attacks
5. TryHackMe: SQL Injection or Activity

SQL Injection

Pause: Injection Attack

Image Credit

This refers to a wide variety of program flas related to invalid handling
of input data.

Specifically, this problems occurs when program input data can
accidentally or deliberately influence the flow of execution of the
program.

SQL Injection Attack

Image Credit

An SQL Injection is a type of cyber attack where a malicious actor
inserts (or "injects") arbitrary SQL code into a query through input
fields in a web application. The goal is to manipulate the application's
database in unintended ways—often to extract sensitive data, bypass
authentication, or even destroy data.

SQL Injection Attack (continued)

Image Credit

How it Works
Web applications often use SQL (Structured Query Language) to
interact with their databases. For example, a login form might execute
a query like:

SELECT * FROM users WHERE username = 'user_input' AND password =
'user_password';

Does anyone have any initial thoughts about the way I handle logins for
my fake website?

How it Works (continued)
SELECT * FROM users WHERE username = 'user_input' AND password =
'user_password';

If the input is not properly sanitized, an attacker could enter something
like: ' OR '1'='1

This changes the SQL Query to: SELECT * FROM users WHERE username
= '' OR '1'='1' AND password = '';

Why is this bad?

SQL Injection Attack (continued)

Image Credit

Classic SQLi – This is injection through direct user input (e.g., form fields,
URLs).

- ' OR '1'='1

Blind SQLi – This is when there is no visible error, but the attacker infers
behavior based on responses.

- SELECT TrackingId FROM TrackedUsers WHERE TrackingId =
'u5YD3PapBcR4lN3e7Tj4'

- …xyz' AND '1'='1
- …xyz' AND '1'='2

- The first can causes the query to return results, because the injected AND '1'='1
condition is true. We may get some message on the page that is different.

- The second can causes the query to not return any results, because the injected
condition is false. You may not see a message appear that normally does.

SQL Injection Attack Types

Image Credit

SQL Injection Attack Types (continued)

Image Credit

Time-based Blind SQLi – The attacker uses delays (e.g., SLEEP(5)) to
infer whether a condition is true or false.

- We could add an injection attack checking a table in the database
structure to see if it meets a conditional (e.g., begins with the letter
a)

- We could then add a second part inside this conditional, and force
the application to react with a 10-second delay.

- Then, if we receive a 10-second delay we have gained some information
from the database.

Parameterized Queries (or prepared statements) - This allows us to
safely separate user input from SQL code.

- Regular (non-parameterized) query
- SELECT * FROM users WHERE username = '{user_input_username}'

AND password = '{user_input_password}';
- Parameterized query (Secure)
- SELECT * FROM users WHERE username = ? AND password = ?;

- We then pass the actual values separately at execution time.

SQL Injection Attack Prevention

Image Credit

SQL Injection Attack Prevention (continued)

Image Credit

Input Validation and Sanitization - We filter out or escape dangerous
characters.

SQL Injection Attack Prevention (continued)

Image Credit

Least Privilege Principle - We ensure the database account used by the
application has only the necessary permissions.

Web application firewalls (WAFs) - This can help detect and block
suspicious input.

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS)

Image Credit

This allows attackers to inject malicious scripts into web pages viewed
by other users. It enables an attacker to execute arbitrary code in the
context of the victim's browser, often with severe consequences like
stealing cookies, session tokens, or other sensitive data.

How it Works
1. A web application allows users to input data (like form fields or

search boxes).
a. If the web application does not properly sanitize or validate this input,

attackers can inject malicious JavaScript code into the input.
2. When other users visit the webpage containing the malicious input,

their browser executes the injected script.
a. These can be used to do things such as session hijacking, credential theft,

phishing attacks, defacement, spreading malware

Cross-Site Scripting (XSS)

Image Credit

Image Credit

Cross-Site Scripting (XSS) Types

Image Credit

Stored XSS - The malicious script is permanently stored on the target
server (e.g., in a database, message forum, or comment section). Then,
when a user visits the compromised page, the stored malicious script is
executed in their browser.

- Example: An attacker posts a malicious script as a comment on a
blog. Every user who views that comment is affected by the XSS
payload.

Image Credit
https://www.imperva.com/learn/application-security/cross-site-scripting-xss-attac
ks/

Cross-Site Scripting (XSS) Types (continued)

Image Credit

Reflected XSS - The malicious script is reflected off the web server (e.g.,
in the URL, query string, or search input) and immediately executed
when the victim clicks on a specially crafted link.

- Example: The attacker sends a victim a link that includes a payload
in the URL. When the victim clicks it, the script is reflected back
from the server and runs in the user's browser.

Image Credit
https://www.wallarm.com/what/reflected-xss-attack

Pause: Document Object Model (DOM)

Image Credit

It's a programming interface for web documents, especially used in web
development. It represents the structure of an HTML or XML document
as a tree of objects, where each node in the tree corresponds to part of
the document (such as an element, an attribute, or some text).

Image Credit
https://www.geeksforgeeks.org/dom-document-object-model/?ref=rp

Cross-Site Scripting (XSS) Types (continued)

Image Credit

Document Object Model (DOM)-based XSS - The attack occurs entirely
on the client-side (in the DOM), meaning that the malicious code
doesn’t involve the server at all.

The web page’s JavaScript code takes untrusted data (like from the URL
or local storage) and dynamically updates the webpage, introducing the
malicious payload into the page's Document Object Model (DOM).

- Example: If a web page uses JavaScript to dynamically load user
input into the page without validating it, an attacker can manipulate
the DOM and inject a malicious script.

Cross-Site Scripting (XSS) Prevention

Image Credit

Input Validation - This ensure that input is restricted to expected data
types and formats.

- For instance, only allow alphanumeric characters where applicable.

Output Encoding - Before displaying user data on a webpage, encode it
to prevent it from being interpreted as HTML or JavaScript.

- For example, converting < to < and > to > prevents the browser
from executing malicious scripts.

Use Safe APIs
- For example, avoid using innerHTML for DOM manipulation.

Instead, use textContent or other safer methods.

Cross-Site Scripting (XSS) Prevention
(continued)

Image Credit

Content Security Policy (CSP) - A CSP is a security header that helps
mitigate the impact of XSS by restricting which scripts are allowed to
execute on a page.

HTTPOnly and Secure Cookies - You can mark session cookies as
HttpOnly to prevent JavaScript from accessing them and as Secure to
ensure they are only sent over HTTPS.

Cross-Site Request Forgery
(CSRF)

Cross-Site Request Forgery (CSRF)

Image Credit

A web security vulnerability that allows attackers to trick a victim into
making unwanted requests to a web application on which they are
authenticated.

*CSRF attacks exploit the trust that a web application has in the user's
browser.

How it Works
1. Victim is logged in to a website (e.g., a bank account or social media

platform) and is authenticated via cookies or session tokens stored
in their browser.

2. Attacker creates a malicious link or script on a different website
(often a completely unrelated site).

Cross-Site Request Forgery (CSRF)

Image Credit

How it Works (continued)
3. Victim visits the malicious site while still logged in to the target

application. The malicious site could be an email, a forum post, a
social media message, or any web page that can embed a hidden
request.

4. Victim unknowingly sends an HTTP request to the target website
with their active session (via cookies or authorization tokens).
Because the request comes from an authenticated user, the website
processes the action as if the victim intended to do it.

Cross-Site Request Forgery (CSRF)

Image Credit

For example, an attacker wants to transfer money from the victim’s
bank account. The victim is logged in to their bank account and visits a
malicious webpage, the attacker can craft a hidden request like this:

<img
src="https://victimsbank.com/transfer?to=attacker_account&amou
nt=1000" style="display:none" />

The victim’s browser loads the page, it sends the request to the bank
with the victim's session cookie attached. The bank sees the valid
request and processes it, thinking it’s a legitimate action from the
victim.

Cross-Site Request Forgery (CSRF) (continued)

Image Credit

Cross-Site Request Forgery (CSRF) Types

Image Credit

Financial Gain - The victim can have funds transferred from their
account to an attackers.

Trust - The user may lose confidence in the application, as the victim’s
account can be compromised.

Sensitive Operations - The attacker may try to change things like
password or email when they are exploited

Cross-Site Request Forgery (CSRF) Prevention

Anti-CSRF Tokens - These are random values generated by the server and included in
every state-changing request (such as form submissions).

- The server will verify that the token sent with the request matches the one
stored in the user’s session. Since the attacker cannot predict the token, they
cannot craft a valid request.

- Example: If a form for transferring funds requires a CSRF token, the form might
look like:

<form action="/transferFunds" method="POST">
 <input type="hidden" name="csrf_token"
value="random_generated_token">

 <!--other form fields here -->
</form>

Then, when the victim submits the form the server checks that the submitted token
matches the one stored in the victim’s session. If it doesn’t, the request is rejected.

Image Credit

Cross-Site Request Forgery (CSRF) Prevention
(continued)
SameSite Cookies - We use the SameSite cookie attribute to restrict
cookies to be sent only in a first-party context.

- This prevents the browser from sending cookies along with requests
initiated from a different origin.

- SameSite=Strict: The cookies are sent only for same-site
requests (i.e., when navigating directly to the site).

- SameSite=Lax: The cookies are sent for same-site requests and
some cross-site requests, like GET requests to load a webpage.

- SameSite=None; Secure: This allows cross-site cookie sending
but requires the cookie to be sent over HTTPS.

This helps ensure that session cookies are not included in CSRF attacks.

Image Credit

Image Credit
https://web.dev/articles/samesite-cookies-explained

Cross-Site Request Forgery (CSRF) Prevention
(continued)
Referer Header Check - We check the Referer header of incoming requests to
ensure they come from a valid source. For example, a request to change
account settings should originate from the login page or dashboard of the
website.

- However, the Referer header can sometimes be unreliable due to privacy
settings, so it is not a foolproof solution on its own.

Double-Submit Cookies - This involves sending a CSRF token both as a cookie
and as part of the request (e.g., in the body or as a header).

- When the request is processed, the server checks that both tokens match,
providing extra assurance that the request is legitimate.

User Awareness - We educate users to avoid clicking on suspicious links or
visiting untrusted sites while logged into sensitive applications.

Image Credit

Pause: Clickjacking

Clickjacking, also known as a UI redress attack, is when an attacker
hides a legitimate user interface element behind an invisible or
disguised element and tricks the user into clicking it.

The user thinks they’re clicking a harmless button or link (like “Play
Video” or “Download Now”), but they’re actually clicking something
else—like "Transfer Funds" or "Like Page."

- The name comes from “hijacking” a click—taking control of where a
user’s click actually goes.

Image Credit

Pause: Drive-by-Download

A drive-by download is a type of cyber attack in which malicious
software is automatically downloaded and installed onto a user's
device without their knowledge or consent. This typically happens
when a user visits a compromised website or clicks on a malicious link,
and the malware is silently downloaded in the background.

Image Credit

XML External Entity (XXE)
Attacks

XXE External Entity (XXE)

This occurs when an XML parser is misconfigured to allow external
entity to reference files or resources located outside the XML
document. The attacker can inject a maliciously crafted XML payload,
they can trick the parser into:

- Reading local files from the server (e.g., /etc/passwd)
- Making network requests (e.g., to internal services)
- Executing denial-of-service (DoS) attacks (e.g., via “Billion Laughs”

attack)
- Potentially exfiltrating data or escalating privileges

Image Credit

How it Works
1. In XML, you can define entities (shortcuts for text or data). An external entity refers to

data located outside the XML file, like a file or URL. Example of XML with an external
entity:

<?xml version="1.0"?>
<!DOCTYPE foo [
 <!ENTITY xxe SYSTEM "file:///etc/passwd">
]>
<user>
 <name>&xxe;</name>
</user>

If the XML parser allows external entities, it will replace &xxe; with the contents of
/etc/passwd, effectively leaking sensitive server data.

XXE External Entity (XXE)

Image Credit

File Disclosure - We use an XXE attack to steal sensitive server files
- Example: <!ENTITY xxe SYSTEM "file:///etc/hosts">

Server-Side Request Forgery (SSRF) - We trigger an internal server
requests (e.g., accessing a private metadata API)

- Example: <!ENTITY xxe SYSTEM
"http://169.254.169.254/latest/meta-data/">

Potential Remote Code Execution (RCE) - In very specific cases where
XML parsers support dangerous protocols (e.g., jar: or php:), this could
escalate to RCE.

XXE External Entity (XXE) Types

Image Credit

Denial of Service - We can use Billion Laughs Attack, this is an
exponential entity expansion leading to memory exhaustion

- Example:

<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
]>
<root>&lol3;</root>

XXE External Entity (XXE) Types

Image Credit

XXE External Entity (XXE) Prevention

Disable External Entity Processing - We have modern XML parsers offer
a configuration option to disable DTDs (Document Type Definitions)
and external entities

Use Secure Libraries - We have XML libraries that disable XXE by default
or explicitly support secure parsing.

- This is mostly an issue for legacy or overly permissive parsers.

Image Credit

XXE External Entity (XXE) Prevention (continued)

Input Validation and Content-Type Checking - We only accept XML
when necessary while validating or sanitizing XML input before
processing.

Least Privilege Principle - Yes, this again. We run services with minimal
privileges. We want to restrict file system access and network
permissions for services that parse XML.

Image Credit

TryHackMe: SQL Injections

OR

Keylogger and Buffer Overflow

OR

Topic Presentation

OR

Course Project

In-Class Work

Image Credit

Questions?

